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‘Sonar Dome Reliability XIX: Data Analysis
of the USS Kauffman Sonar Rubber Dome

1.0 Introduction

In August of 1992, a new Sonar Rubber Dome (SRD), serial #022, instrumented with sen-
sors for the Sonar Dome Acoustic Deflection Measurement System (SDADMS), was
installed aboard the USS Kauffman (FFG-59). This marked the third ship-board deploy-
ment of the SDADMS, but in a highly modified configuration. This was the first time that
it would be used to test a SRD, since the two previous deployments of the SDADMS had
been to test Sonar Dome Rubber Windows (SDRW’s).

The purpose of this report is to relate the findings of the data taken from FFG-59’s SRD.
This will include a comparison between the predictions of the University of Washington
Applied Physics Laboratory’s (UW/APL) Finite Element Model (FEM) and NRL’s mea-
surements.

1.1 Maine Shakedown Test

In October and November of 1992, two sea tests were performed on FFG-59’s SRD, as
previously documented!. The first of these sea tests occurred on October 21-22, 1992,
during a post dry—dock shakedown. It was intended that this first sea test serve as a train-
ing cruise for the new SRD test personnel. As such the test was an unqualified success.

Among the many data runs taken, the most informative were acquired between 0856 and
1430, on October 21. Fourteen data runs were taken during this period as FFG-59 per-
formed independent maneuvers in rough seas. The exact sea conditions are not known,
since the environmental data acquisition program, “SEAB7"2, was not ready for use, and
since FFG-59 has been unresponsive to our requests to provide the necessary quartermas-
ter’s log information from this time period. It is known that the seas were quite rough and
that the ship was probably traveling at low speed.

The data runs from the Maine Shakedown test, that will be referred to in this report, are
MAXL1- MAXL6 and MAXRUF1-MAXRUF8. All fourteen data runs use the same 125
transducer scan pattern. As previously noted, there was no environmental data recorded.
As such, this limits the usefulness of the information provided by these data runs. The
most salient feature of this series of data runs is that they provide the most comprehensive
information about the FFG-59 SRD’s characteristic deflection behavior.

This data has been used in an in—house developed, animated 3-dimensional visualization
program, called “srdvwr2, which reveals some of the SRD’s modal movement patterns

Manuscript approved October 5, 1994.
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(see Figure 12). In this report, the Maine Shakedown data will be used to contrast observa-
tions from the following Antigua sea test.

1.2 Antigua Sea Test

During the period of November 15-25, 1992, deflection measurements were made on
FEG-59’s SRD as the ship transited from Newport, R.I. to Antigua in the British West
Indies (see Table 1). During this period, 27 data runs were taken, from numerous scan
groups which variously include 65 of the 128 total deflection measurement transducers
installed. Most data runs scanned from 8 to 16 transducers, with two data runs using up to

24 unique transducers.

As previously documented!, the acoustic deflection measurement equipment behaved
irregularly. This made the data acquisition process quite challenging. During the brief
periods when FFG-59’s SQS-56 sonar was not active, NRL test personnel acquired as
much data as possible. Much of this time, though, was spent diagnosing equipment prob-
lems and creating new transducer scan groups.

Tt wasn’t known until much later, after careful data screening and iterative processing, that
nearly all of the data contained anomalies that are difficult to explain. It was further dis-
covered that the sample rate of the environmental data was much lower than had been
expected (see Appendix H). This would later prove to be a problem when UW/APL used
the environmental data to test the accuracy of their SRD FEM. The data analysis chal-
Jenge, then, was to recover as much meaningful data as possible from this apparently con-
taminated data set.

2.0 Data Processing

Before discussing data run specifics, it is essential to review the methodology used for
data collection and data reduction.

2.1 Data Collection

The acoustic deflection measurement process involves the measurement of an acoustic
signal’s propagation, in time, through water. In particular, this refers to measuring the
elapsed time from when a driver transducer, which is mounted on the inner surface of an
SRD, is excited, to the time when the acoustic wave from this driver transducer is sensed
by a fixed array of receiving hydrophones (see Figure 1).

These “time—of—flight” or time—-interval events are measured by a group of four interval
timers, which individually relay their readings to the system computer through their own
private interfaces. The system computer stores the time—interval measurements in tempo-
rary memory, called buffers. Each interval timer has a separate buffer allocated to it. When
the buffer memories fill with time—interval measurements, the computer flushes the buff-
ers into a program array and continues to store incoming time—interval measurements in
the appropriate buffers.

2 Data Processing




Table 1: Antigua Sea Trial Data Summary

File Name

Transducer
Scan
Pattern

Approx
Sea
State

Date:
Nov.
1992

Course
Change
(deg)

Ship
Speed
(knots)

Max. Sound
Roll | Velocity
(deg) (m/s)

ANT_l16D1

ANT16_2 D1

SM01_16D1

SMO00_16D2

BASMO02_16D1

BANT16_4D3

BAO0001_16D2

CA2_27D1

DF3_27D9

FFA3_27D10

ANT16

1

15

0

0.0

1457.17

1471.48

1471.19

S

1470.96

1468.69

1491.87
et

1494.19

1503.67

1506.18 |
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Receiver Transducers

(In banks of four)

Sonar Dome

(SRD or SDRW) Driver Transducers

(Mounted at locations
on the inner surface
jointly selected by
BFG, APL and NRL)

FIGURE 1. Ultrasonic Time-of-Flight Measurement

One of the error monitoring features of the data acquisition process involves checking the
buffers to ensure that they all hold the same number of readings. Infrequently, one or more
of the four interval timers will miss a timing event, usually due to a drop in received
acoustic signal intensity. If such an event occurs, the computer must abort the data acquisi-
tion run. This is necessary because the timers must be run asynchronously to obtain the
high data throughput required. This means that if one timer misses an event, the missed
event cannot be backtracked through buffer memory, and the entire data run therefore
becomes unintelligible.

This condition occurred a few times during the Maine Shakedown test and was thought, at
that time, to be due to the rough seas. From a system operator’s perspective, the situation
would call for re-initiating the data run. If the condition became persistent, the system
operator would be required to run a diagnostic routine to determine which driver trans-
ducer was dropping out. The system operator would then create a new scan pattern that
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gither increased the associated receiver hydrophone amplifier gain for that driver trans-
ducer, or completely cull the troublesome driver transducer from the scan pattern.

During the Antigua sea test, driver transducer drop—out was a chronic condition, which
necessitated creating numerous scan patterns based upon a predecessor. Table 2 illustrates
this with scan patterns ANT16, ANT16_2, ANT16_3 and ANT16_4. Scan pattern
LAST16 is identical to ANT16 with the exception that different gain settings were
assigned to the computer controlled amplifier for certain driver transducers in the scan pat-
tern.

Once data had been successfully collected, the system operator could then run a data con-
tinuity checking routine, in the main data acquisition program “SEADUAL16Y"?, that
would provide several statistical graphs that showed the degree of dispersion in the “time—
of-flight” data. This program served as a good diagnostic for determining a confidence
level for the data. As such, the Antigua data showed a lot of dispersion, giving an immedi-
ate indication that the deflection measurement system was not performing in a reliable
manner. This early indication initiated a sequence of actions that focused on correcting the
system performance.

2.2 Data Reduction

With the commencement of the SDRW deflection measurement test on the USS Yorktown
(CG—48) in July, 1989, it was quickly understood that data—reduction would become a sig-
nificant, time consuming task. Commercial data processing programs, such as DSP Devel-
opment Corporation’s DADiSP®, were investigated but they lacked the ability to perform
specific tasks that were unique to deflection measurement data processing. General pur-
pose data processing programs are primarily intended for processing entire data records
and are not conducive to the manipulation of individual data points which may be cor-
rupted. With this understanding, an in-house data screening program was developed,
called “GROOM?” (see Figure 13).

The primary feature of “GROOM” was that it permitted data outliers to be identified and
corrected by a human operator. Outliers in deflection measurement data are represented by
unexpected trigger events. This might mean that the system interval timer in question was
not triggered by the intended acoustic signal.

Outliers typically occur individually and can be corrected by averaging the two nearest
neighbor data points. Outliers can also occur in groups. It has been found that group outli-
ers often contain deflection information that is displaced by a fixed time constant. Correc-
tion of group outliers consists of determining the beginning and end of the group and
shifting the outlying data by the fixed time constant.

After the FFG-59 SRD tests, “GROOM”? was significantly enhanced and modified. New
semi—automated routines were added to help find and correct outliers with minimal human
intervention. Several criteria for outlier correction still required human input. The primary
criterion was in determining the base line from which outliers were identified. This was
aided by the addition of a sample coordinate conversion routine which, on demand, con-
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verted the “time—of—flight” information, from a specified data sample of the four interval
timer records, into four sets of Cartesian coordinates. :

There were many cases in the Antigua data runs where there were as many outliers in a
given record as there were “good” data points. It became ambiguous as to which data
points were outliers and which data points were not. With the introduction of displayed
reference coordinates to “GROOM?”, the sample coordinate conversion provided an indis-
pensable guide to correcting what might have been hopelessly garbled data records.

As the post processing of data continued, it was repeatedly discovered that “GROOM”
had to be modified to enable correction of increasingly subtle anomalies in the data.

2.2.1 Coordinate Conversions

To explain the coordinate conversion process, it is necessary to review some of the prepa-
rations that led to the FFG-59 sea tests. B. F. Goodrich was tasked, by NAVSEA 91W4D,
to produce a CAD data base of an ideal SRD, and a Cartesian coordinate set of the pro-
posed driver transducer locations.

It was important to establish an ideal set of driver transducer location coordinates, via
CAD software, to serve as a starting point for equipment installation planning, and post
sea test data processing. Unfortunately, these ideal coordinates could not completely trans-
late into physical reality. This was due, in part, to small variances between the hand-fabri-
cated SRD and the CAD model. Other variances with the ideal coordinate base came from
the process of installing the driver transducers on the inner surface of the SRD.

This process involved meticulously drawing a coordinate grid on the inner surface of the
SRD to facilitate accurate placement of the driver transducers. The compound curvature of
the SRD’s surface made drawing straight lines a distinct challenge. It was also discovered,
during the grid layout process, that the ends of the SRD drooped by approximately one
half inch, while the SRD was installed in its shipping fixture. This half inch droop trans-
lated into as much as one inch of error in grid placement on the fore and aft sloped sur-
faces.

2.2.2 Receiver Positioning

The accuracy of the deflection measurements were heavily dependent upon the accurate
positioning of the deflection measurement system’s receiver arrays. A total of ten, 4
hydrophone, receiver arrays were installed in FFG-59’s SRD to accommodate defiection
measurements of over 75% of the SRD’s entire inner surface (see Figures 14 and 15). An
in—house computer visualization package, called “srd”?, was developed to determine the
optimal placement and angle of focus for each of the ten receiver arrays (see Figures 16
and 17).

Unfortunately, when it came to the actual installation of the receiver arrays on FFG-59,
dry—dock scheduling restrictions limited the equipment installation personnel to the use of
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measuririg tape and line—of-sight estimates while working under very unfavorable condi-
tions. This situation caused an undetermined amount of error in receiver placement.

In 1988, NRL, developed a triangulation algorithm that permitted reliable conversion of
time-of—flight measurements into Cartesian coordinates (See Appendix F). This algo-
rithm, formulated by Dr. Kin W. Ng, of SFA, Inc., under NRL contract, used a flexible rel-
ative origin scheme to accommodate the irregular geometry of the SDRW compartment on
CG-48.

Dr. Ng’s routine was later adapted to the SRD geometry. The adaptation of the algorithm
was heavily dependent upon accurate physical placement of the receiver arrays, since
each array had its own relative origin that had to be translated by a known distance to the
SRD’s common origin. When the receiver arrays were finally installed on FFG-59, the
uncertainty in their placement introduced coordinate transformation problems that caused
significant complications, leading to delays in the subsequent post sea test data conversion

process.

The best method for minimizing the receiver array positioning uncertainties was to mea-
sure SRD deflections with respect to a “zero deflection” pierside data run, rather than the
ideal coordinate set established by B. F. Goodrich. The “zero deflection” pierside data run,
MAXD1000, became the default pierside reference basis. The B.F. Goodrich ideal refer-
ence coordinates were later used as a basis in the in-house developed computer animated
3-D visualization program, “srdvwr”2, with the differential pierside reference-based
deflection values superimposed over these points.

The pierside reference basis worked quite well with the Maine Shakedown data. However,
the Antigua data exhibited significant anomalies for which the pierside reference basis
couldn’t account.

3.0 Deflection Data

After processing several Antigua deflection data files, it became apparent that the data
exhibited many anomalies. The most notable anomalies were static offsets, suggesting that
the SRD had permanently shifted to starboard by 1 to 3 inches and aft by 1 to 2 inches,
with respect to the pierside “zero deflection” reference.

This eventually led to the creation of the transducer specific summary graphs which plot-
ted a given transducer’s average deflection, in Cartesian coordinates, with respect to the
pierside reference, for each data run in which the transducer was used (see Appendix A).
The most remarkable feature in the graph was the disparity in behavior between the Maine
Shakedown and the Antigua sea tests. The Maine Shakedown data, as well as the pierside
data runs, are all well correlated with the pierside reference. Virtually all of the Antigua
data runs exhibit a marked divergence from the pierside reference.

8 Deflection Data




3.1 Cause of the Disparity

It is thought that the disparity exhibited in the Antigua data may be due to a combination
of two effects. The first effect would be water intrusion into underwater electrical cable
connections. This may have severely degraded the excitation pulse to the driver transduc-
ers, or it may have severely degraded the received signal from the receiver hydrophones.
The second possible effect may have been electromagnetic interference from shipboard
systems, such as the SQS-56 sonar.

3.1.1 Water Intrusion

The possibility of water intrusion into electrical connections in the SRD is very likely.
When final connections were being made in dry—dock, the SDADMS underwater elec-
tronic modules had been exposed to grit from sand-blasting and paint droplets from the
nearby spray—painting of epoxy based paint on FFG-59’s hull.

Every reasonable precaution had been taken to prevent contamination of the electrical
connectors, from sealing the exposed connections with duct tape, to complete replacement
of all water—proofing o-rings at the last possible moment. However, the dry—dock sched-
ule was very tight with spray—painting and sand-blasting continuing, round the clock,
even during the final cable connection process at 0300 in the morning.

It is very difficult to predict what the effects of water intrusion can be without knowing the
degree of pervasiveness. Slight intrusion, affecting one circuit can lead to corrosive build—
up between contacts, and therefore degradation of signal transmission. Large scale intru-
sion can lead to the establishment of ground loops and even short circuits.

If a short circuit were the case then no data could be acquired from the affected circuit. A
ground loop would add a DC bias to the circuit, which may have happened. However, if
the DC bias were persistent then no data could be acquired from the affected circuit. An
intermittent ground loop would cause random DC shifts in the affected circuit which could
cause spurious interval-timer trigger events. Some of the Antigua data exhibited this prop-
erty. In this case the affected data record would have been eliminated in “GROOM?”, and
therefore would have no further effect in the data conversion process.

A corrosive build—up would cause increasing signal attenuation, which would necessitate
higher amplifier gain settings. This may also have happened. In this case, a steadily
degrading signal would cause a time shift from the expected trigger point. This will be dis-
cussed in section 3.2.

3.1.2 Electro-Magnetic Interference

When the deflection measurement system’s custom electronics were being developed and
tested, the work could only be realistically performed off ship. This limited the range of
conditions which the developer could simulate. After the deflection measurement system
was installed on FFG-59, it was discovered that when the SQS—56 sonar was energized,
even in the passive mode, a considerable amount of electrical interference was detected
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from the deflection measurement system’s sensitive electronics. The deflection measure-
ment personnel tried to filter out as much of the electronic interference as possible but it is
somewhat likely that the SQS-56 sonar did disturb the sea test measurements by causing
periodic electromagnetically coupled noise spikes that may have resulted in unexpected

interval-timer trigger events.

This is only a somewhat likely case since the deflection measurement system performed
nominally during the Maine Shakedown even while the SQS—56 sonar was energized.
What is unknown is the cumulative effects of the SQS—56 sonar operating in the active
mode. When FFG-59’s SQS-56 sonar went active, often without prior warning, the
deflection measurement personnel would shutdown the deflection measurement system to
minimize permanent equipment damage. It is difficult to quantify what, if any, long term
effect the SQS—56 sonar, or any of FFG-59’s other electronic equipment may have had on

the SRD deflection measurements.

3.2 Time Shifts

Under normal operating conditions, the intensity of the received signal does not vary sig-
nificantly. There are certain circumstances that can perturb the acquired data, even when
the deflection measurement system electronics are functioning properly.

Regardless of the cause, one observed result was the appearance of time shifts in some
received signals. These may also have been caused by an increase in receiver hydrophone
pre—amplifier gain. The input to each interval timer had a computer controlled pre—ampli-
fier associated with it. During a data acquisition run, the deflection measurement system’s
computer controller would set the pre-amplifier gain to a pre—defined level associated
with a given driver—transducer/receiver—hydrophone combination.

As the Antigua sea test progressed, deflection measurement system personnel found that it
was frequently necessary to increase the assigned pre-amplifier gain for many driver—
transducer/receiver—hydrophone combinations, to ensure continuous acquisition of data.
These changes to pre—amplifier gain settings often caused the system interval timers to
trigger at a different point on a received acoustic wave packet than what was originally
recorded in the pier-side zero—deflection reference data set. These pre-amplifier gain
changes therefore often caused time shifts in the Antigua data runs.

Figure 2 illustrates these two cases

« In the case of a signal attenuated by contact corrosion, the associated interval-timer
could trigger off a later peak in the received waveform packet. This could cause a
delayed trigger of a multiple of approximately 5 micro seconds.

« In the case of increased computer controlled amplifier gain, the associated interval
timer might trigger off an earlier peak in the received waveform packet. This could
cause a premature trigger of a multiple of approximately 5 micro seconds.

Figure 2 illustrates the analog waveform processing that takes place between a receiver
hydrophone and the input to the associated interval timer. The received signal passes
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FIGURE 2. Time Shift Concepts

through a fixed 40dB pre—amplifier and is then further amplified by a computer gain con-
trolled amplifier. The output signal from the amplifier then passes through a two stage ana-
log squaring circuit that rectifies the signal and increases the magnitude of the signals
above 1.0 Volts, and attenuates the signal magnitudes below 1.0 Volts. The double squar-
ing process effectively reduces the possibility of an unexpected interval timer trigger event
that would be caused by a border line signal peak.

After exhaustive manipulation of the Antigua sea test data, it was discovered that, in some
cases, the time—of-flight data showed an offset of five micro seconds, or a multiple
thereof, from the pierside zero deflection reference data. This is the expected time shift for
the above mechanism. A spreadsheet analysis was generated that graphed the performance
of a given transducer over the entirety of the FFG-59 sea tests.

Of the 65 transducers used in the Antigua sea test, transducer 50, located in the forward
starboard portion of the SRD, was used more than any other. The graphs in Appendix A
illustrate the performance of transducer 50, as well as a number of other transducers, from
the Maine Shakedown, which includes the “MAX...” Series of data runs, through the end
of the Antigua sea test. The most apparent feature in the graphs is how the data diverges on
and after data run “A16_3D1”. This data set was the second run taken after FFG-59 had
gotten underway for Antigua on November 16, 1992. The time intervening between, when
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the deflection measurement system was apparently acquiring good data in
“ANT16_2_D1”, on November 16, and when driver transducers started returning diver-
gent values, in “A16_3D1”, on November 17, was approximately 27 hours.

It is still unknown what mechanism caused the deflection measurements to become
skewed as the graphs indicate. It was thought that the data could be adjusted by shifting
the time~of—flight records by multiples of 5 micro seconds to bring them into convergence
with the pierside zero deflection reference and the Maine Shakedown sea test data. This
process was applied to the data run “ANT_16_3D3”, which was one of the data runs used
to test UW/APL’s SRD FEM.

4.0 Comparison with UW/APL Predictions

The graphs in Figures 4-11 summarize the results of the UW/APL predictions for the 12
transducers mutually used in data runs “ANT16_2D1” and “ANT_16_3D3”. The graphs
depict the deflection results in terms of movement perpendicular, or normal, to the inner
surface of the SRD, and movement along, or tangential, to the inner surface of the SRD,

as shown in Figure 3.

A-unit surface normal vector (perpendicular to SRD surface)
R-deflection vector: R = Jiz T+

= N,-projection of R onto fi: _N_r =R*h
(component of deflection vector perpendicular to SRD surface)

Zero Deflection Paint
(Pierside)

S;-projection of R onto SRD surface: |§J =[Rx#d
(component of deflection vector tangential to SRD surface)

SRD Outer Surface

FIGURE 3. Deflection Components

Surface normal deflection components are expressed in both positive (outward movement)
and negative (inward movement) terms, relative to the pierside zero deflection reference
location for NRL measurements, and the theoretical BFG CAD coordinates for the UW/
APL predictions. The tangential components are magnitude only quantities and therefore

are directionless.

12 Comparison with UW/APL Predictions




4.1 Data Run ANT16_2_D1

Data run “ANT16_2_D1” did not show the divergence anomalies present in later Antigua
data runs, and was therefore not adjusted with the 5 micro second multiple time shifts. The
scope of this analysis encompasses ten samples from the data run time point, 7.47 seconds,
to time point, 19.85 seconds. In this data run, the seas were calm, at sea state 1 or less, and
FFG-59 was travelling at approximately 20 knots.

Surface Normal Component of Deflection
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_ |- = = NRL
-0.25 = -

-0.50

-0.75-

-1.00

15 29 50 51 65 66 70 71 75 85 92 108
: Transducer

Positive values correspond to outward displacement

FIGURE 4. ANT16_2_D1 Static Surface Normal Displacement

These first two comparison graphs show static or average deflections for the analysis time
window. In Figure 4, the Static Surface Normal Displacement graph shows that the magni-
tudes of the APL predictions and the NRL measurements are similar but are near mirror
images of each other. In most cases where APL has predicted inward movement of the
SRD, the NRL data indicates that the opposite occurred.
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FIGURE 5. ANT16_2_D1 Static Tangential Displacement

In Figure 5, the Tangential Component of Deflection graph shows that APL has consis-
tently predicted deflections along the surface of the SRD of approximately 0.5 inches.
Seven of the NRL transducers show small tangential movement of 0.5 inches or less. Five
of the NRL measurements indicate larger tangential deflections from nearly one inch to
two inches. This group of transducers may be showing symptoms of the large anomalous
offsets that affected later data runs, and may have therefore returned flawed data.
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FIGURE 6. ANT16_2_D1 Dynamic Surface Normal Movement

The next two graphs depict the dynamic or time varying component of the deflections in
the analysis time window. The Dynamic Surface Normal Component graph, in Figure 6,
shows that APL has predicted dynamic surface normal movements of approximately 0.15
to 0.20 inches. The NRL measurements show smaller movements of approximately 0.02
to 0.08 inches. This indicates the APL FEM predicts dynamic surface normal movements

that are nearly three times what NRL has measured.

Comparison with UW/APL Predictions
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FIGURE 7. ANT16_2_D1 Dynamic Tangential Movement

The Dynamic Tangential Movement graph, in Figure 7, shows that APL’s predictions vary
between 0.03 inches and 0.32 inches. NRL’s measurements show dynamic tangential

movements of approximately 0.08 inches or less.
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4.2 Data Run ANT _16_3D3

Data run “ANT_16_3D3” did show the divergence anomalies present in most of the
Antigua data runs. This data run was adjusted with the 5 micro second multiple time shift
but did not yield the improvements that were anticipated. The graphs that follow show
both the unadjusted NRL measurements as well as the 5 micro second multiple time shift
adjustments of the same NRL data. This analysis encompasses ten samples from the data
run time point, 104.92 seconds, to time point, 117.28 seconds. The environmental condi-
tions for this data run, were slightly rougher seas, at sea state 2, with FFG-59 was travel-
ling at approximately 18 knots.
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FIGURE 8. ANT_16_3D3 Static Surface Normal Displacement

This first static comparison graph of the Surface Normal Component of Deflection in Fig-
ure 8, shows that the magnitude of the NRL measurements are somewhat greater than the
APL predictions. The unadjusted NRL data (NRLO) shows deflection components that
vary from 0.75 inches to approximately -2.2 inches. The diversity in the range of these
measurements suggest that this data may be flawed. The NRL 5 micro second multiple
adjusted data (NRL5) shows more consistent results with values that are nearly twice
what APL has predicted but generally indicate SRD displacement in the opposite direc-
tion.
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FIGURE 9. ANT_16_3D3 Static Tangential Displacement

In Figure 9, the static Tangential Component of Displacement graph shows that APL has
consistently predicted SRD surface displacements of approximately 0.5 inches. The unad-
justed NRL measurements (NRLO) fluctuate from nearly one inch to greater than three
inches. This again suggests that this dataset may be flawed. The NRL 5 micro second mul-
tiple adjusted data (NRL5) generally shows good agreement with APL’s predictions.

18 Comparison with UW/APL Predictions
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FIGURE 10. ANT_16_3D3 Dynamic Surface Normal Movement

The dynamic Surface Normal Component of Deflection graph, in Figure 10, shows the APL
predictions varying from nearly 0.05 inches to as much as 0.23 inches. The NRL 5 micro
second multiple adjusted data closely follows the NRL unadjusted data, which indicate a
smaller range of SRD surface perpendicular movements of 0.07 inches or less.
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FIGURE 11. ANT_16_3D3 Dynamic Tangential Movement

In Figure 11, the dynamic Tangential Component of Displacement graph shows that APL
predicts SRD surface movements ranging from more than 0.1 inches to 0.2 inches. The
NRL 5 micro second multiple adjusted data again generally follows the NRL unadjusted
data which indicates SRD tangential movements of approximately 0.7 inches or less.
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5.0 Conclusion

The modification and deployment of the SDADMS to measure the deflection behavior of
the SRD was an ambitious effort intended to provide calibration data for UW/APL’s SRD
FEM. This first time effort was partially successful in that a large amount of dynamic de-
flection data was collected and was used for comparison with the predictions from UW/

APL.

While the results from this comparison cannot be considered conclusive, they do suggest,
from a dynamic perspective, that the SRD may be more rigid than initially predicted by
UW/APL’s Finite Element Model. Due to unexpected difficulties associated with the data
collection process, primarily with the collection of environmental data (see Appendix H),
the necessary dynamic SRD pressure data was not obtainable, which UW/APL needed to
provide accurate dynamic deflection predictions. The results of the comparison cannot
therefore be considered to be the final word on the subject.

Unlike in the SDRW, where installed test equipment is relatively accessible, the physical
ship—board configuration of the SRD prevents the correction of system problems that may
arise after SRD installation. This first deployment of the SDADMS in an SRD necessi-
tated a two fold increase in system complexity. The deployment of the SDADMS aboard
FFG-59 went well when these facts are taken into account. Unfortunately the test was
only partially successful.

For the future, it is recommended that another test be conducted on a SRD to confirm the
findings of the UW/APL comparison.
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Appendix A: Transducer Specific Performance Summaries

The graphs in this section review the average deflection behavior of a subgroup of driver
transducers that were used in the Maine Shakedown and Antigua sea tests. This subgroup
consists of the 21 driver transducers that were used most frequently.

The X-axis of each graph represents a consistent set of data runs presented in chronologi-
cal order. This group include the 14 Maine Shakedown data runs, as noted on page 1 in the
body of this report, two Antigua pre-departure pierside data runs and 26 Antigua under-
way data runs. The two Antigua pre-departure pierside data runs, ANT_16D1 and
ANT16_D2, consist of the driver transducers grouped in scan pattern ANT_16.

The Y-axis of each graph represents the average or static deflection of a transducer over
the duration of a given data run with respect to that transducer’s zero deflection pierside
reference.

For each driver transducer, two graphs are presented. The lower graph displays how each
of the four system interval timers responded to the driver transducer in question. In situa-
tions where the time-of-flight data from a given timer was unrecoverable, its data points
have been eliminated.

The upper graph represents the triangulated deflection measurements in Cartesian coordi-
nates. X-axis measurements are aligned with the ship’s keel, where positive values repre-
sent displacements in the aft direction. Y-axis measurements are aligned athwartships,
where positive values indicate starboard displacements. Z-axis measurements are aligned
vertically, where positive values represent upward displacements.

These graphs typically show how the transducers behaved during each of the two sea tests.
During the Maine Shakedown most transducers exhibit a uniform behavior pattern,
whereas in the Antigua underway data runs, they show a deflection behavior that diverges
from the zero deflection pierside reference.
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Appendix B: Data Run Range Summaries

The graphs presented in this appendix represent the dynamic behavior of most of the
driver transducers used in the 26 Antigua underway data runs. Some driver transducers
were removed from the graphs because they exhibited such extreme offsets from the zero
deflection pierside reference that they skewed the vertical scaling on the graphs to the
point where the dynamic ranges of some other driver transducers became too small to reg-
ister on the graph.

The graphs are chronologically arranged by data run. Each page displays three graphs,
each graph representing an axis in the Cartesian coordinate system. The X-axis of each
graph represents a subset of driver transducers from a given data run. The Y-axis of each
graph represents the range of deflections measured in a given data run, with reference to
the zero deflection pierside reference. The data for each transducer is represented by a ver-
tical bar which depicts the minimum and maximum measured deflections.

Some transducers exhibit a wide range of deflections while most others show a very smalil
range of deflections. The transducers that yield what seems to be a disproportionately wide
deflection range, may contain data with a large amount of noise.
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Appendix C: ANT_16_3D3 Cartesian Plots

This section contains plots of deflection data from ANT_16_3D3 which was the first data
run used for comparison with predictions from UW/APL’s FEM of an SRD.

Each driver transducer is represented by two pages of plots. The first page shows three
graphs, each of which represents measured deflections on an axis in the Cartesian coordi-
nate system. The X-axis of each of these graphs represents elapsed time from the begin-
ning of the data run. The Y-axis represents absolute deflection measurements with respect
to the SRD’s Cartesian origin (in the forward end of the SRD).

The second page consists of four scatter plots that depict deflection measurements, over
the duration of the data run, in Cartesian coordinate space. The upper left scatter plot
shows deflection measurements on the X-Y plane. The lower left plot shows deflections in
the Y-Z plane. The lower right scatter plot shows deflections in the X—Z plane. The upper
right plot is a 3 dimensional oblique rendering of the same data.

The scatter plots from the second page are useful in determining if the SRD exhibits "
dynamic movement in a dominant direction.
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Appendix D: ANT16_2_D1 Cartesian Plots

This section contains plots of deflection data from ANT16_2_D1 which was the second
data run used for comparison with predictions from UW/APL’s FEM of an SRD.

Each driver transducer is represented by two pages of plots. The first page shows three
graphs, each of which represents measured deflections on an axis in the Cartesian coordi-
nate system. The X-axis of each of these graphs represents elapsed time from the begin-
ning of the data run. The Y-axis represents absolute deflection measurements with respect
to the SRD’s Cartesian origin (in the forward end of the SRD).

The second page consists of four scatter plots that depict deflection measurements, over
the duration of the data run, in Cartesian coordinate space. The upper left scatter plot
shows deflection measurements on the X-Y plane. The lower left plot shows deflections in
the Y-Z plane. The lower right scatter plot shows deflections in the X-Z plane. The upper
right plot is a 3 dimensional oblique rendering of the same data.

The scatter plots from the second page are useful in determining if the SRD exhibits
dynamic movement in a dominant direction.
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Appendix E: Correlation Analysis

E.1 Description

As the pervasiveness of the offset anomalies in the Antigua sea test data became more
apparent with continued processing, the prospect of using pitch data from the USS Kauff-
man to predict vertical displacement in the SRD was investigated. It was intuitively deter-
mined that if pitch data could be correlated to existing vertical displacement (Z-axis) data,
then a prediction would be possible.

A graphical analysis was performed on two data runs. The first analysis was performed on
data run ANT16_2_D1 (see Figure E-1), over the time segment used in the UW/APL-
NRL comparison. The pitch and Z-axis deflections recorded were quite small. The graphi-
cal analysis revealed very little correlation between pitch and the Z-axis data, for the low
sea state of this data run.

In Figure E—1, the Z-axis data is represented in orange or gray. The orange records corre- .
spond to Z-axis records that exhibit some correlation with other Z-axis records. The gray
records correspond to records that exhibit what appears to be random characteristics.

The second graphical analysis was performed on data run CFA2_27D1 (see Figure E-2 &
E-3). The sea state was approximately 4 and the ship speed was 4-5 knots. We evaluated
an 11.5 second time window that features a large displacement in the data run.This data
run showed definite correlation between the pitch and several Z-axis records. '

With the promising appearance of this second dataset, a spreadsheet correlation analysis
was performed. This analysis used a discrete Fourier transform to derive a dominant refer-
ence frequency from the pitch data. The amplitude (A) and phase (¢p) coefficients from
the transform were used to generate an ideal sinusoidal function at the dominant pitch fre-
quency, which was then fit to existing Z-axis deflection data.

The output from the spreadsheet is a linear correlation coefficient (r) which specifies the
quality of the sinusoidal curve fit. The values of r range from 0.0 (no confidence) to 1.0
(high confidence). The output from the spreadsheet also produces a phase angle (¢,) which
represents the phase difference between the Z-axis deflection and the pitch stimulus.

The spreadsheet correlation analysis is summarized in the legend of Figure E-2. When
interpreting the values of r, it should be noted that values greater than 0.71 indicate that at
least 50% of the random variations in the data records are accounted for in the pitch curve
fit. In other words, r? represents the percentage of the RMS variations in the data which
are accounted for in the correlation process.

In Figure E-2, the Z-axis data is represented in red or gray. The thin-red records corre-
spond to Z-axis records that have a correlation coefficient (r) greater than 0.5. The bold-
red records correspond to Z-axis records where r is greater than 0.71. The gray records
correspond to records that have low correlation values. These are records where most of
the variation is not correlated.

Figure E-3 demonstrates the relationships of four locations on the SRD and the relation-
ship of the Z-axis acceleration, with pitch. It can be seen from this figure that locations 82,
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87 and 106 move upward when pitch indicates downward movement of the bow. Location
70 behaves in an opposite manner implying that the forward part of the SRD moves out-
ward when the bow moves downward.

It should also be noted that this analysis only covers the dynamic component of the data.
Any static offsets that may have been present in the data have been subtracted prior to

analysis or graphing.

In conclusion, it can be seen from the attached figures that at high sea state and low ship
speed, there is a significant correspondence between pitch and Z-axis movement in the
SRD. When the sea state is low, other factors, such as ship speed, play a larger role in
defining vertical movement in the SRD. '

E.2 Correlation Analysis Supplement

The discrete Fourier transform is defined as
X() =TS x(e’™

Where w=27f,
and T=At (the sample rate)

Using the Euler identity the discrete Fourier transform can be expressed as

Xk = T[Zx(t) cos(m{ti—to})}+jT{2x(t) Sin((!){ti—to})}
\ n 1N n ,
real imaglinary

X(k) can be defined in polar coordinates in terms of an amplitude (Ap) and a phase (@p)-

Ap = J(rcal) 2+ (imaginary) 2

_ imaginary
¢P B atan[ real J

These coefficients are used to develop an estimated sinusoidal function based on the dom-
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inant frequency of pitch (f,)

X, (1) = bApsin(O){ti—tO} +¢p)

Where b is a parameter related to actual spectrum width. We assigned b a value of 2 for
this analysis. The linear correlation coefficient (r) is determined from X(#) and X ,(?)

PRS
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"Appendix F: Distance Determination and Coordinate
Transformation Algorithms |

F.4 Introduction

Each time a transducer on the dome inner surface is electrically driven, the data recorded
consists of four acoustic time-of-flight values from the driver transducer to the four hydro-
phones of a given receiver group. If the speed of sound in the intervening fluid, ¢, is
known, then these time-of-flight values can be converted into distances r; (for i=1 to 4)

such that
ri==«¢ t;

These four distances are used in four groups of three to calculate four different sets of 3-
dimensional x,y,z coordinates for the hydrophone. These four sets of coordinate values
can then be averaged together for a more exact position determination.

F.5 Distance Determination Algorithm

Any three receiver hydrophones can be considered to form a plane in space and a local
coordinate system can be setup (see section F.3) such that the coordinates of these receiv-
ers (as shown in figure F-1) are:

(0,0,0), (a,0,0), and (b,c,0)
transducer @ T(X,Y,Z)

Z 2 \
A / |
y, \
/ ! \
l‘l / I \ 1‘3
/ [
7 \
/ rpl \
/ l \ —
/ | y
H3(b9ca0)

\
\

Figure F-1. Distance Determination Algorithm Relationships
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Then. by geometry, the position coordinates, (X,Y,Z), of any transducer can be determined
using the measured time-of-flight values by:

2 _pA2 2
X=r1 r) + a
2a

_ 121 byvar2by 124 h24c02-
Y _ﬁcrl(l D) 3(0)-rebl+ct-ab

7 =Vr?- (XYY

F.6 Coordinate Transformation Algorithm

In the SRD case, we have a global coordinate system centered at the top forward center of
the dome and oriented along the ship's axis. The positions of all of the receiver hydro-
phones were measured with respect to this global coordinate system in dry-dock. For a
given group of three receivers, let these global coordinate values be

(0) (0) (0

. We perform a vector translation, shifting the origin of the coordinate system to the point of
the first receiver hydrophone, by a vector subtraction of H, from all three position vectors.

This gives
1 1 1 1 1 1 1 1
1 ©0,0,0), HYxOyP2), HP e y§0z5).

where, for example Xz(l) = XZ(O)—XI(O), y2(1)=y2(0)—y1(°), etc.

A rotation about the z(1 axis, as shown in figure F-2, is then performed using the transfor-
mation matrix

cos ¢  sin @2 0
Ay, =| -sin gy cos ¢ 0
0 0 1

M (1
X .
where cos @3 = —AL—, sin @2 = Z{i—— and A=Y )((21)2+y(21)2 .
2 2 :
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This results in the new coordinates being:

H20,0,0), H(A2,0,25")

X(1>X<1>+y<1>y<1> x(Dy(h- X(1>y(1)
Ag Ay &

H(2>(

» .
2
v X

e
\ -

&
\ _ =¥ 5,04,02,0)
\ e
-

\ ~ \
-~ (pz
o X O

Figure F-2. Rotation About the z Axis.

A second rotation, this time about the y(2) axis, is then done. This matrix is

cos 03 0 sin 03
A3,y = 0 1 0

-sin 03 0 cos 03

<@ e
where cos 63 = -‘A—f—, sin 03 = Kz—’ and Az = v ) +(y(2)) +(z(2)) . Since
3 3

2
x(22) = Ay, y(22) =0, and 2(22) = z(zl), we also have Aj = ’\@(1)) +(y(l)) +(zg_l))
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Hence, for clarity, we will drop the parenthetical indices on the X, y, and z's whenever they
refer to the first (1) system. The coordinates after this second rotation can be shown to

have the form:

H?(0,0,0), H5(A,,0,0), and
yoy3+ZoZ3 X2y3-X3Y2 A3Z3-(X2X3+y2y3)Z)

1_1(33) X-7X3+

A; A, AsAs
VAL
VAL
» —
3
\ X
\ o - -
\ _ 77 Hy®(A3,0,0)
\ -
\ B>~
~
\
-7 \os _,
— X 2

Figure F-3. Rotation About the y® Axis.

Finally, we perform another rotation about the x3 axis having the matrix form:

1 0 0

4.x = COS 04 SIN 04

Agx=| 0 8 sind
0 -sin 84 cos &4
3 ¥O) s
where cos 84 = —(-:3—, sin 04 = C3—, and C3 = (y(33) +2{) ) This gives us the coordinates
4 4

H,(0,0,0)
H2(A3,0,0)

Hj X2X3+yi)’3+2223 C4,0
3
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as seen in the figure below.

VAS)
7@
1N —_
\ v y @
P
\ -
\ \ P ¢ H3@ (x34,y34,0)
-~
\ C/A/
-
P y )]

Figure F-4. Rotation About the x® Axis.

These are now in the correct coordinate system to use the distance determination algo-
rithm above. Thus to transform into the local correct coordinate system we need to per-
form a vector translation followed by three rotations

> ->
r= A4yxA3,yA2’Zr

But, once we have the transducer position in the local coordinate system, we want to trans-
form them back into our global coordinate system to relate them to the positions of all of
the other transducers. To do this we invert the matrices and multiply in reverse order

followed by the vector translation of opposite sign than before.

F.7 Summary

The computer program inputs the receiver hydrophone positions as measured in dry-dock
and the groomed time-of-flight readings obtained at sea. For each subgroup of 3 receivers
in each of the 10 four hydrophone receiver groups the program calculates all of the above
vector translations and rotation matrices and their inverses. Then, in the scan pattern file
associated with each data set the program is informed which receiver array was used to
record the time-of-flight data for each transducer in the data run. Using the above algo-
rithms the 3 dimensional displacement of each transducer is calculated in the global coor-
dinate system of the SRD.
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Appendix G: Failure Mechanism Likelihood Analysis

G.1 Introduction

During the Antigua trial of the Sonar Dome Acoustic Deflection Measurement System, the
system behaved in an anomalous manner and much of the data collected was degraded by
noise. Following this test, an in-house study was conducted to determine the single most
likely or most important cause of the system failure, and to identify all potential contribu-
tors to the observed system anomalies.

The following documents the results of this study. It includes system design and pro-
cedure alterations and guidelines which will be implemented in future system deployments
to ensure in-so-far as possible that a similar failure cannot reoccur.

G.2 Potential Candidate Ratings

Table G-1 presents the results of our post-trial analysis. It lists each mechanism suggested
as a potential candidate which might conceivably be responsible for the failures encoun-
tered. The likelihood that each might be responsible was evaluated (often subjectively)
using the criteria described below, and a relative rating was assigned in four key catego-
ries. From these a total was calculated for each candidate, and a relative final rating was
obtained by (somewhat arbitrarily) subtracting 8 from this total.

Candidates with a total rating of zero or less are considered highly unlikely, and need not
be considered further in this analysis. The bases of the rating factors for candidates with
final ratings greater than zero are discussed later in this section.

G.3 Description of the Rating Factors.

The guidelines used in assigning the above ratings are as follows:

« Observed Precondition: This score relates to the direct observation of any physical
pre—existing conditions related to the potential occurrence of the failure mode. The
score ranges from O, if there was no direct observation of the physical conditions
needed, to a score of 5 if the required pre-existing condition was observed. Note that a
score of 5 does not assure the failure mode occurred, but only that the pre-existing con-
ditions required to enable the failure were known to be present.
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TABLE G-1. Ratings Summary for the Potential Failure Candidate Mechanisms.

Observed Concerns Consistency | Consistency
Potential Candidate Precondition re: Design with Timing with Mode || (Total- 8)
Water Intrusion Due to:
- module seals 0 2 2 5 1
- sandblasting re: 5 3 2 3 - 5
connectors
- case corrosion 0 4 1 3 0
Crosstalk Due to:
- shared cables in cableways 5 2 2 4 5 ||
- module design 0 1 1 3 (-3) "
- ship EMI or power 3 2 2 3 2
Mechanical Damage:
- to modules during dome 0 2 1 2 -3)
installation
- to dome during deployment 0 0 3 2 -3) ||
- to cables due to high sea 0 1 3 2 (-2)
conditions
Electrical Damage: "
- Burnout from ship 5 1 3 2 3 “
operating sonar
- Burnout from ship power 5 0 2 0 -1
transients
- Sand-blast contamination 5 1 1 1 0
of controller hardware “
Combination Effects: “
Items 2 and 4 5 4
Items 2 and 6
e —
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Concerns re: design: Post-test analysis of the system design with the objective of
locating deficiencies has resulted in identifying a number of areas for potential design
improvement. The score in this category reflects the relative likelihood that a deficiency
in the system or component design, in conjunction with other events and conditions,
could potentially lead to the type of failure candidate. A score of 5 indicates the known
presence of a design defect which could account for the type of candidate condition
described under certain conceivable conditions, while a score of 0 indicates our inabil-
ity to find any system design feature which could contribute to the candidate occur-
rence. Note that a score of 5 does not assure the failure mode occurred, but only that a
system design feature could potentially result in the occurrence of the failure type if
other enabling conditions were present.

Consistency with failure timing: Following a substantial period of satisfactory sys-
tem operation, the observed failure events occurred rather suddenly and sporadically.
The dates and observations are as shown in Table G-2.

TABLE G-2. Observation Log

Date Location Acoustic - System Status
Aug. 91 - CBD full system tests Fully functioning N
Jan. 92
May BFG driver installation | = -----
Sept. Installation on USS Kauff- Fully functioning
man / Portland Maine
Oct. 21-22 Shakedown Cruise Fully functioning; minor adjustment to

trigger gain settings needed.

Nov. 4-6 Pierside tests Major degradation noted:
* trigger gain levels off
* 4 star modules inactive
» DC offsets on signal lines

Nov. 14 - 15 Diagnostic pierside Initiaily fully operational. Then degradation

progressively reoccurred. (Subset of 32 still
operating)

Nov. 16 - 25 Sea Trial 65 locations initially usable, but further pro-

gressive degradation during the trial.
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The degradation tended to coincide with ship deployment (or immediate preparations
for ship deployment) for the Antigua run, but was not observed in the previous Maine
Shakedown run. The rating in this category reflects the relative likelihood that the can-
didate failure mode would occur with this type of timing. For example, a candidate
which requires simultaneous catastrophic failures of multiple independent items to pro-
duce this timing history would be rated 0, while one which emphasizes a single event
leading to the onset of sporadic behavior would be rated 5.

Consistency with failure mode: As indicated in Table G-2, following shipboard
installation, some of the triggering levels required adjustment. A few weeks later, prior
to beginning the Antigua trial, the Jevels again required adjustment. This was followed
by erratic triggering behavior of some modules, where the number of affected modules
increased during the course of the trial. Some modules recovered for periods during the
trial. Post analysis of the data strongly suggests well-defined triggering offsets, which
would be stable for long periods before transitioning to a new level. The rating in this
category reflects the likelihood that the failure candidate could mimic this observed

behavior.

G.4 Description of the Candidates.

The candidates with positive final ratings are now discussed, and the intended corrective
actions for future system deployments are presented.

1. Water intrusion due to module seals: This candidate assumes failure of the O-ring
seals used to close the module containers. A reconsideration of the seal design suggests
that a better enclosure could have avoided this concern. Two factors weigh against the-
likelihood of this candidate. First, it is unlikely that all seals would have failed within
the narrow time window observed. Such a failure mechanism is typically associated
with a wide distribution of time-to-failures. Secondly, in previous submergence tests of
these enclosures, there is no evidence of seal failure. These tests included 24 hr submer-
gence at 60 psi pressure for all modules, and some long term submergence testing at

lower pressures.

While this candidate does not appear responsible for the data anomalies of the Antigua
data set, precautionary measures will be taken in all future system designs to remove
this issue from contention. These measures will include the use a more rugged enclo-
sure with more robust seals.

2. Water intrusion due to sandblasting re: connectors: This candidate follows from
the fact that sandblasting and painting was occurring overhead during the dry—dock
installation. Since the ship dry-dock schedule would not permit a suspension of these
activities, we were forced to make do with a covering canopy which did not protect the
system components from either the airborne grit or epoxy paint.

This candidate is seen to have a high rating. This reflects our concern that the O-ring
seals on the standard underwater electrical connectors have a high probability of having
picked up grit, which would lead inevitably to a water path to the electrical leads,
resulting in stray electrical coupling paths to all other radiating, or grounded equip-
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" ment, operating on the ship. While by itself this candidate is not fully consistent with
the timing, or mode of failures observed, it will be seen that in conjunction with items 4
or 6 nearly all rating factors are then quite high.

This candidate does appear to be an important contributor to the data anomalies
observed. While future system designs will be modified to reduce the impact of con-
taminants, the most important improvement will be our conviction that system and
component installation will not be attempted in the future unless the environment con-
ditions are suitable to the limitations of the hardware.

« 3. Water intrusion due to case corrosion: This candidate was proposed following the
observation that a stainless steel mounting tab was used on the (anodized) aluminum
enclosure. It was proposed that this use of dissimilar metals might lead to early failure
due to electrolytic corrosion. This candidate is rated low for reasons similar to that of
candidate 1. Submergence tests are currently underway to verify this.

To avoid future concerns, future system designs will particularly avoid the use of dis-
similar metals.

« 4. Crosstalk due to shared cables in the cable-ways: This concern follows from the
fact that while new cable-ways were supposed to be installed for our exclusive use, dur-
ing system installation we encountered considerable resistance from SUPSHIP to
install these cable-ways due to dry-dock time constraints. Hence our system cables
shared existing cable-ways with other unshielded ship cables. This resulted in many of
our cables running parallel and in close proximity to other shipboard cables. These
shipboard cables are believed to be associated with the operation of the SQS-56 Sonar,
and hence probably were carrying appreciable currents and dynamic signals. Such a
condition is highly conducive to crosstalk.

While this candidate is rated relatively high, by itself it cannot account for the timing of
the failures. This candidate would be expected to contaminate the data primarily when
the ship is under way. This is consistent with the data. However, since it did not appear
on the Maine Shakedown cruise, the system design apparently included appropriate
shielding and internal compensation to tolerate the levels of crosstalk present under the
conditions of the Maine Shakedown cruise. Hence for this candidate to be a major con-
cern, some new electrical coupling path must appear prior to the Antigua cruise, such as
that of Candidate 2 above. Such a combination of events could certainly bypass the
internal protections included in the electronic design and have symptoms fully consis-
tent with the observed failure mode and timing. ’

« 5. Crosstalk due to module design: This would include any inherent deficiency in the
design of the electronic circuitry which would make it susceptible to internal crosstalk
or signal coupling. We were unable to locate any such design weakness, and the nega-
tive final score indicates a very low probability that this is a contributor.

e 6. Crosstalk due to ship EMI or power: This concern is similar to that of item 4. By
itself, the electronics are judged sufficiently protected from such noise that this would
not be an issue, as shown for example in the Maine Shakedown cruise. In conjunction
with new electrical leakage paths, however, no electronic circuit can be said to be fully
immune.
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This candidate has a lower final score than Candidate 4 largely because the levels of
induced noise would be expected to be much lower, and hence it would be more likely
to be tolerated by the system.

7, 8, 9. Mechanical Damage: This category is uniformly rated low. Upon post-test
review, the mechanical design of the components is judged satisfactory to handle all
normal ship environmental operating conditions. While unusual ship conditions such as
running the dome into an obstruction might damage some components of the system,
there were no such unusual occurrences reported by the crew. Minor mechanical fail-
ures would not account for the data failures observed.

10. Burnout from ship operating sonar in active mode: The SQS-56 sonar system
was frequently shifted to active mode without warning while our system was collecting
data. This overpowered our system, and forced a quick manual shutdown on each
occurrence While our electronics design includes some protection from large overvolt-
ages, this candidate reflects the concern that the level of protection may not have been
sufficient to handle the very large levels encountered. If such damage occurred, the
most likely components include the pre—amplifiers and the on-board power supply reg-
ulators.

This candidate is not rated particularly high. Additional clamps will be installed in
future systems to remove this concern.

11. Burnout from ship power transients: During the conduct of the tests, some signif-
icant fluctuations in the ship-supplied power were observed. The likelihood that these
contributed to the system degradation are considered low, due largely to the fact that
such fluctuations were anticipated and protections were included in the custom elec-
tronic circuitry and commercial equipment.

12. Sandblast contamination of controller hardware: While in dry-dock, sandblast-
ing accidentally occurred in the Sonar Equipment room, severely contaminating our
rack-mounted electronics, including computer hardware and storage media. This is cer-
tainly a potential source of early equipment failure. However, the type of failures
encountered and the results of the diagnostic tests performed in the control room all
suggest that this event is not a major contributor to the problems encountered.
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Appendix H: Environmental Data

H.1 Introduction

As was previously noted, the environmental data acquisition program, “SEAB7”2, was not
ready on the Maine Shakedown test. The time intervening between the Maine Shakedown
and the Antigua trip, was intended for completing the environmental data acquisition soft-
ware and for fine tuning the deflection measurement system’s overall performance.

H.2 Background

- When the environmental data acquisition software was ready for testing, FFG-59 was vis-
ited in Newport, R.I,, on November 4-5, 1992. After energizing the deflection measure-
ment system, it was gradually discovered that a significant degradation in system
performance had occurred. This was typified by numerous driver transducer drop—outs
and eventually the functional loss of four star modules. The evidence initially indicated
that several star modules and/or perhaps a junction box may have become flooded. There
was so much concern over pinpointing and correcting the problem that il available time
was spent on this task rather than checking out the new environmental data acquisition
software. Before leaving FFG-59 on November 5, intermittent functionality had been
regained from the degraded modules. Since the evidence suggested that the intermittent
functionality problem was associated with the electronics sealed in the SRD, there was no
purpose in staying longer to correct the problem.

On November 14, a pre—Antigua departure checkout was performed on the deflection
measurement equipment. All components were functioning nominally. On November 15,
prior to the arrival of the sea test personnel, another equipment check revealed that the
same components, discovered on November 4-5, had begun to function intermittently
again.

After FFG-59’s departure, sea test personnel tried exhaustively to collect data in spite of
repeated equipment malfunctions. By this time, it had become a certainty that the equip-
ment malfunctions were occurring due to water intrusion into components in the SRD. In
many respects, this situation is very similar to the problems NASA has experienced with
some of their unmanned exploration vehicles; the malfunctioning deflection measurement
equipment was sealed in the SRD, and therefore wasn’t accessible for repair. The Antigua
sea test personnel did all that they could to acquire what data the defiection measurement
equipment would functionally permit.

H.3 Post Processing

It wasn’t until after the Antigua sea test that the environmental data received close scru-
tiny. It was then that it was discovered that the environmental sample rate was insufficient
for adequate correlation to SRD deflection data. This occurred because the sampling rate
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of the environmental data acquisition software could not be accurately simulated during
development in the laboratory. An attempt was made to simulate environmental data col-
lection rates but since similar shipboard hardware was not available in the laboratory, this
led to errors in estimating the proper sampling speeds.

The expectation was for the environmental sample rate to be equal to or at least half that of
the deflection measurement sample rate. The actual environmental sample rate was
between 10 to 15 times slower than the deflection measurement sample rate. This equated
to one complete scan of the environmental inputs every 1.3 seconds. If the deflection mea-
surement equipment had been performing properly up to and during the Antigua sea test,
this flaw in the environmental data acquisition software would have been detected early

and corrected.

When FFG-59 entered dry—dock in January of 1993, the SRD deflection measurement sea
test personnel discovered that the starboard side wave height sensor had its electrical con-
nections severed by the heavy seas that the ship had experienced. It was additionally dis-
covered that the acoustic impedance matching foam that had been installed in the
cylindrical apertures of both wave height sensors, had become dislodged and pushed up
into the apertures, obstructing the acoustic transducers. For this reason, the wave height
measurements were either sporadic or non—existent.

In June of 1993, after the Antigua environmental data files had been sent to the UW/APL
for FEM evaluation, it was discovered that the pressure data from both pressure transduc-
ers was incoherent and was therefore suspected to be corrupted. A survey was conducted
of all Antigua data runs, including two pierside runs, and it was noted that in almost every
case, the range of pressures, from maximum to minimum, were between 5 and 6 PSI for
pressure transducer 1, and 3 to 4 PSI for pressure transducer 2 (see Figure H-1). This
wouldn’t have caused much concern except that the pierside data runs showed the same
pressure range as well. The pierside data runs should have exhibited a range difference of
no more than 1 PSI.

It was also pointed out by Gordon Chartier of UW/APL that not only was there a 1.5 PSI
difference between pressure transducers, after calibration corrections, but the pressure
data records didn’t correlate well with each other, or with any other environmental record
(see Figures H-2 and H-3). There should have been no significant pressure differences
between pressure transducers after calibration correction factors had been added. At this
point, it became very likely that both pressure transducers had produced unreliable output.

The lack of reliable pressure input information to their FEM limited UW/APL to predict-
ing SRD deflections based upon hydrodynamic loading, or ship speed inputs. This implied
that UW/APL could only supply static deflection predictions based on ship speed. They
would not be able to accurately predict dynamic deflections based upon sea state.
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Figure H-1 Pressure Transducer Maximims, Minimums and Averages
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